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Abstract. A completely algebraic treatment of the six-dimensional hyper-Coulomb problem
is discussed in terms of an oscillator realization of the dynamical algebs@¢7, 2). Closed
expressions are derived for the energy spectrum and form factors.

1. Introduction

Recently there has been renewed interest in the study of the three-body problem, largely
arising from constituent quark models of baryons in terms of three valence quarks. In these
problems, the hypercentral approximation [1], which means using a hypercentral potential,
often provides a good approximation to the actual situation [2, 3]. Among the hypercentral
potentials, two play a special role: the six-dimensional harmonic oscillator and the six-
dimensional Coulomb potential, since both problems are exactly solvable. In this paper,
we present a completely algebraic solution of the hyper-Coulomb problem. The method is
based on the use &0 (7, 2) as a dynamical group of the six-dimensional hyper-Coulomb
potential [4]. It is a generalization &0 (4, 2) dynamical group of the ordinary hydrogen
atom [5].

In addition to obtaining a series of mathematical results associated with this rather
complicated algebra, we briefly point out that the hyper-Coulomb potential can be used as
a good approximation to actual physical situations. One occurs in atomic physics and it
was mentioned long ago in [6]. The authors showed that the two-body Coulomb potential
in the hypercentral approximation, that is the hyper-Coulomb potential, provides a good
description of the lower atomic states. Another application occurs in hadronic physics, in
the constituent quark model of baryons. Due to the extraordinary difficulty in calculating
physical quantities from QCD (in the nonperturbative regime) one has to rely on models, like
constituent quark models. The short-range behaviour is dominated by Coulomb potentials
as seen from the nonrelativistic reduction of the one-gluon exchange diagram [7] and the
long-range one by a linear potential as from results of lattice calculations. So one considers
the potential dominated by a Coulomb-like plus a linear confining term [2, 8, 9]. The
Coulomb-like term provides a good approximation to the low-lying states and the effects
of the linear confining terms plus other small contributions can be taken into account in
perturbation theory as shown in [3]. This application is discussed in section 8. Particular
emphasis is paid to form factors which are the quantities of direct experimental interest, but
which in general are very difficult to calculate.

0305-4470/98/459041+14%$19.5@C) 1998 IOP Publishing Ltd 9041
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2. The hyper-Coulomb potential

We consider the hyper-Coulomb potential in six dimensions

p> T

Hzﬂ—; (1)

with p? = Zle pj2 andr? = Zf:l rjz. The energy eigenvalues and the degeneracy of the
eigenstates can be obtained by studying the dynamical g¥ou, 2) [4]. The generators
of the Lie algebra ofSO(7, 2) can be realized in coordinate space by

Ljx =rjpx —repj
6
Lj7 = %rjpz — Dj Zrkpk + %Ipl - :_2Lr.i
k=1
6
Lig = 3rip> = pj Y _repe+ 3ipj + 37)

k=1
&)
ng = rpj
6
Lg=Y repc—3i
k=1
L7g=3(rp* —r)
Lgg = 3(rp* +7r)
with j,k = 1,...,6. These generators are antisymmettig = —L;;, and satisfy the
commutation relations
[Lij, Lul = —i(gikLji + gjiLix — girLjx — gjxLir) 3)
with
—8;i forj=1,...,7
8ij = ! . (4)
+8ij for ] = 8, 9.

The SO(7, 2) algebra combines th60(2, 1) spectrum generating algebra of the hyper-
Coulomb problem and it§O(7) degeneracy group into a single algebraic structure [4].
The corresponding subgroup chains are

0B ® S0,

4 ) q
SO(7,2) D D S06)®S0(2). (5)
So( ® SO0©2
w ) qo

The eigenstates of the hyper-Coulomb problem belong to a single infinite-dimensional
representation af O (7, 2) [4], which can be decomposed into the irreducible representations
of its subgroups to provide a complete set of basis states. The generators and the quadratic
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Casimir operators of the groups appearing in the group lattice of equation (5) are given by

7
SO :  Lip(,k=1,...,7 A%:%ZL_,?k
jok=1
6
SO®): Liy(j,k=1,...,6) Aé:%ZLfk (6)
jk=1
SO(@2,1): Ty=Lq, To=L7g T3 = Lgg T2 =T} - T —T?
SO(2) : T3 = Lgg T?.
The Casimir operators satisfy the relations [4]
T?= A5+ %

T¢= A5+ 2. ")
This indicates that there exists a complementary relationship [10] between the groups
S0(2,1) and SO(6) within the single irreducible representation §10(7,2). As a
consequence, the irreducible representations@6) are determined by those 610(2, 1).

The same holds fo§ O (7) and SO (2). The basis statels/) can be classified either by the
S0(2,1) D SO(2) labelsq, go which span the discrete representation of SO(2, 1), or

by the SO (7) > SO (6) labelsw, y which span the symmetric irreducible representation of
SO(7). They are simultaneous eigenfunctions of the Casimir operators of the subgroups in
equation (5) and satisfy the eigenvalue equations

T2|y) = q(g + DIY) (¢ real and < 0)
T3l¥) = qolV) (go=—q+swiths=0,1,...)

g h (®)
AlY) = w(w +5)|¥) (w=0,1,...)
AW =y +dl¥)  =01... 0.

Combining equations (7) and (8), we find
@+ =yr+dH+2 ©)
qg =w(w+5) + 275

which, solving forg < 0 andgg > —¢q, gives
g=—v-3  qp=o+s (10)

3. Basis states

For three identical particles, the hyper-Coulomb Hamiltonian of equation (1) is invariant
under the permutation groufz;, and hence its eigenstates also carry good permutation
symmetryr = S, M or A, corresponding to the symmetric, mixed symmetric, and
antisymmetric irreducible representation &f, respectively. In order to incorporate the
permutation symmetry we associate the coordingtesth the Jacobi vectors for the three-
body problem [11]

1
p=—=(x1—x2) = (r1,r2,13)
\/E (11)
A= —(x1+ T2 — 2x3) = (r4,75, 76).

NG
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Herex1, x; andx; denote the coordinates of the three particles. A convenient set of basis
states is provided by the irreducible representations of the group chain

So( > So® D> [SUB D> SO0B) D S0 ® S0(2)>

w ) Y ) (f’ll, ”12) ) L ) ML ) v (12)

The reduction ofS O (6) can be obtained by using the complementarity relationship between
the groupsSU (3) and SO (2) within the symmetric irreducible representatiSm (6) [12].

As a consequence, the labels i/ (3) are determined by that &fO(2). The branching
rules are given by

y=01...,0
v=—y,—y+2,...,y

(ng,np) = (% r ; v) .

The reduction fromSU (3) to the rotation grougs O (3) is not fully reducible. In order to
label the states uniquely an extra label is needed. We follow the procedure of [13] and
introduce instead ofn1, no) the labels(A, n) = (n1 — na, n2) = ((y +v)/2, (y —v)/2).

The values ofL contained in(x, i) are given by [13]

(13)

Kk =min{A, u}min{x, u} —2,...,10r0

_ max{A, u}, maxi, u} —2,...,10r0 fork =0 (14)
- K,k +1, ..., c+maxi, u} fork >0
M,=-L,—-L+1,...,L.
The S3 invariant states are given by the linear combinations
—i
) ——v)
vV 2(1+ 81},0) (15)
(=D
() +1—=v)).

vV 2(1 + 81},0)

Here we have introduced the labgl by v = vo (mod 3). These wavefunctions transform
for vy = 0 ast = A, S, and forvg = 1, 2 as the two components of the mixed symmetric
representatiom = M. Summarizing, the basis states of the hyper-Coulomb problem can be
characterized uniquely by

W) = lw, y. v, &, L, My). (16)

Here P = (—)¥ denotes the parity. In table 1 we present the classification scheme of the
basis states fow = 4.

4. Energy spectrum

The energy spectrum of the hyper-Coulomb problem in six dimensions can be obtained by
using the properties of th€0(2, 1) spectrum generating algebra [4, 14]. The Sclimger
equation can be expressed in terms of the generata$§®©@2, 1) by introducing

Oly)=r(H - E)|y) =0 (17)
with

1 1
O:(——E>T3+<—+E>T1—r. (18)
21 2u
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Table 1. Basis states of O(7) with @ = 4. The correspondin§O (2, 1) labels arejo = w + %
andg = —y — g

w Yy v k LF
4 0 0 0o q
1 £1 0 1,
2 +2 0 0.2,
0 R
3 +£3 0 1,1,.3..3;
+1 1 1,,2,.3,
4 4 0 0,254,
+2 1 14,,24.35.45
0 0 o2}
2 %34

This equation can be simplified further by performing a rotation about a tilting @hgle

Ol) =0 (19)
with
1¥) = Ne %2y
= wonmien (1 .
O = e OdiT2 = <Z — E) (T3 coshg + T sinhé) (20)

1 .
+ (2— + E) (T coshd + T3sinhf) — 7.
"
The tilting angle may be chosen to diagonalize either the compact gengsditorthe bound
states, or the noncompact generdfprfor the continuous states. The discrete spectrum is
obtained by the choice
E+ 5
tanhg = - L (21)

_ 1
2n

which reduces equations (19) and (20) to an eigenvalue equatidn of

(V=2E/uT3 — 1)|§) = 0. (22)

The energy eigenvalues of the hyper-Coulomb problem are obtained by solving equation (22)

ut?

EZ_W (n=qo=w+§). (23)
The corresponding tilting angle is given by
6 = —In(n/ut). (24)

The physical eigenstates, i.e. the solutions of the @tihger equation for the hyper-
Coulomb problem, are related to the group states by a tilting rotation

v) = jive—”“"/“”ﬂ&). (25)
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They satisfy the normalization condition (note that the group metri¢ is[15])

1= (w"(/f) — /\%<sz|ei|n(n/u‘[)T2re—i|n(n/;LT)T2|,(/}>
— /\%(&|e”n(’l/ﬂf)T2(T3 _ Tl)efﬂn(n/ur)Tz'&)

1 5 -
= A/Z—M(Wn(Tg - T)|Y¥)

n2

= 26
N (26)
Hence, the normalized physical eigenstates can be expressed in terms of the group states as

|w=%?fmwﬁm. (27)

5. Wavefunctions

The wavefunction|y) satisfies the eigenvalue equations of equation (8), and hence is a

SO (2, 1) eigenstatéy) = |q, go) With

(=29 — 1)!
, — T, )90t , —
g qo) \/(qurq)!(qo - 1)!( g, —q)

(—=2g — 1)!
, — , —q|(T- qotq
(g, qol \/(q0+q)!(qo_q_1)!<q q|(T-)

(28)

with 7. = Ty £iT,. The action of73 and the raising and lowering operatdfs on the
S0 (2, 1) eigenstatesdy, qo) is given by [16]
Tslq. q0) = qolq. qo)

(29)
T:lq. q0) = vV—(q F q0)(q £ o + Dlg, qo £ 1).

The ground state of the hyper-Coulomb potentialdas 0, and hence the principal quantum

number isn = g0 = w + g = g Moreover, since the only allowed value pfis y = 0,

we haveg = —y — 3 = —2. Excited states with the same valuegfbut with different
values ofgg, can be created by applying the step operafarsaccording to equation (28).
SinceT. commute with the generators 80 (6) (and its subgroups), these operators do not
change the quantum numbers associated with the irreducible representati@igcpfand
its subgroups/, |v|, ¥, LF and M;. The operatord.. are step operators igy, and hence
change the value of theO (7) labelw by one unit. Excited states with the same valug®f
but with different values of, can be created by using the operatbyswith j =1,...,6.
Since Lj7 is a generator ofSO(7), it does not change the value af However, under
SO(6) it transforms as a six-dimensional vector, and hence changes the valubyobne
unit. The transformation properties #f andL;7 underSO (2, 1) give rise to the selection
rules

T : Ag=Ay =0 Ago = Aw = %1

Lj7: Ag =Ay ==+£1 Ago = Aw =0. (30)
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Summarizing, theSO (2, 1) states|y) = |q, go) can be created from the ground state by
applying the operatorg,. and L7

5 5, I+ 5 7 Ty 5 9y It

[—3.3) — I—-335 — |—-33 —
$ L7 $ L7

77 T 7 T

=53 — 1-33 — (31)

3 Lj7

9 9 I

|—§,§) —

Similarly, the ket statesy/| = (¢, go| can be created by using the operatérsand Lj7. It
is important to note, that th§0(7) wavefunctions|y/) = |g, o) of equation (28) satisfy
a different normalization condition, see equation (26), than $b&7) wavefunctions of
[17, 18]. The hyper-Coulomb wavefunctions, i.e. the eigenfunctignsof the original
Hamiltonian of equation (1), correspond to the group stagestilted aboutT by an angle
0 = —In(n/ut), see equation (27). Sind® commutes with the generators 80 (6) (and
its subgroups), the hyper-Coulomb wavefunctign still has goody, |v|, ¥, LF and M,
but the SO (7) label w is no longer a good quantum number.

6. Oscillator realization

The oscillator realization, frequently used for hydrogen-like problems characterized by the
dynamical grous O (4, 2), is based on the isomorphism betwesn(4) andSU (2)QSU (2),

and the Schwinger realization 81/ (2) [5]. However, this realization cannot be generalized

to other dimensions, since it is based on a particular property of the three-dimensional case.
In [19] an oscillator realization was proposed for the generalimensional case which is
characterized by the dynamical groSP (m + 1, 2). For six dimensionsrf = 6) this gives

a realization of the algebra &fO (7, 2) in terms of seven boson creation and annihilation
operators

Ly = —i(a}[ak — aZaj)
7 7
Lig= %i(Za;azaj — ZZaja};ak — 5ajT + aj>
k=1 k=1

(32)

Ljg

7 7
—%(Zala}:aj - ZZa;a]Iak - 5a]T - aj>
k=1 k=1

7
ng:Zagak+% (],k:]-,,?)
k=1

The basis states of equation (16) correspond to linear combinations of the oscillator states

(a;)"10) (33)

il:!_ «/n,-!

where the total number of oscillator quanta)s; n; = w. According to equation (11),
we associatez} with j = 1,...,6 with the components of the two Jacobi vector boson

operators andi with a scalar boson operator

ag = P;,k “1]:+3 = Pi,k ab =5t (34)

with k = 1, 2, 3. The oscillator realization of equation (32) is especially useful in deriving
matrix elements.
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Table 2. Oscillator realization for the wavefunctiong) = |g. go) and (¥/| = (¢, go| with
w < 2. For these states the labeland« are redundant.

ﬁ(ol[m,lpp,l + prapail
~=5(0lPp.1pr.0 = Pr1pp.0]
75 0ppapra

ﬁ(ol[l’p.lpp.l — prapaal

T15(0ps - i

>

q g0 o y LF M, Oscilator
- 0 0 0)
- 0 0 (|
- 0 0 %(OM
- 1 1, ﬁ(olp/},l
- 1 1, 72 (0lpaa
- 0 0of 2%/175(0|s2
- 11, %@5 (Olspp.1
- 1 ﬁS(O\SPA,l

2

2

2

2

2

2

|
NI NIO NIO NI NIO NIO NI NI NIUT NI NI NloTNloNloT
MO NIO NI NI NIO NIO NIO NI NI NI NI NI=~INIoTl Ul
NNMNNNMNNNMNNNNRRROO
=
[
=
OO NMNNRNRPORROOO

ﬁ;(ol[m *Pp — P ]

=

7. Form factors

The six-dimensional hyper-Coulomb potential is an exactly solvable model, and hence
provides a set of closed expressions for the spectrum and the form factors. The hyper-
Coulomb ground stateyo) = /e "/kDT |y /ng is characterized by the principal
guantum numbengy = g According to the oscillator realization of equation (32), the

ground state has zero oscillator quanta

lvo) = |0) (Yol = (0. (35)

Excited states can be created by the procedure outlined in section 5 in equations (28) and
(31). The oscillator realization of son®0 (2, 1) eigenstate$y, go) and (g, go| is given in
table 2.

The derivation of the elastic form factor requires the evaluation of the matrix element
of exp(iki,) = exp(ikrg) in the ground statéy)

Fo(k) = (Yol€"s|ro) = L5 (ro|&"0/10) T2 glhrogria/ioTe ) (36)
g
According to equation (2), both the coordinafeand the radius can be expressed in terms
of a linear combination of generators
ry = ng — Lj7 r = ng — L7g. (37)
This allows one to expresky(k) in terms of the generators ¢fO (7, 2)

T -~ . . . -
Fo(k) = l’:_2<1//0|el|n(no/ltf)L78(L89 _ L79)elk(LsafL67)efl|n(no/ﬂf)L7s|1//0)
0

1 - . B -
= 5 (Yolno(Lgo — Lg)gknotles=Len/ut |4,
0

- - 1 - . -
= (Yrolehrolbas=Len/ut gy n—o<wo|L7gé""°<L68*L67>/“’|wo>. (38)
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(i) The first term in equation (38) can be evaluated by rewriting
eikno(LGS*Lm)/l” — e*iOthe*iﬁLme*i)/Lm (39)
with
sinh(B/2) = +kno/2ut
cost(B/2) = (1+ (kno/2ut)?)"*
. . (40)
= — =4
sina siny costA/2)
cosx = —cosy = —tanh(8/2).

Since the ground state has zero oscillator quanta, the matrix element of equation (39) reduces
to

(1Z0|eikno(L68*L67)/I”|IZ}O> — “ZO|e*i01Ls7e*il3L7se*iVLs7|I;O)
= (Yole™ P12 y0). (41)
The ground state wavefunction satisfies
TslY0) = nolvo)
T_|v0) = azl0) = 0
and can be characterized fy = —ng, go = no). The ground state expectation value of

exp(—iBL7g) in equation (41) is a representation matrix element for the discrete deties
of SO(2,1) [16]

(42)

,2,10
(Yol PL7%|y0) = (—no, nole™™2| — ng, ng) = (coshg) : (43)

(i) The second contribution to the form factor of equation (38) can be rewritten as
(Vo| Lygg*otbes=LeD/ it |y) = (yro| Lyge™'* 7€ 1P Lragr L7 |4)g)
= (Yol (L79COSx + LgoSina)e 17 yjg).  (44)
The first term on the right-hand side can be expressed in terms of the derivative of
equation (43)
(Vol L7ee P17 90) = —i(o| L7ge™ P17 |)r0)

d - . .
= @Wole_'“mll/fo)

—2no—1
= —ng (sinh%) (coshg) : (45)

The second term in equation (44), proportional toositvanishes identically. This can be
seen by introducing th80 (2, 1) ® SO (2, 1) algebra

[G1, Go] = —iG3 [G2, G3] =iGy [G3, G1] =G

[Hy, H] = —iH3 [Ha, H3] = iH; [Hs, Hi] = iH; (46)
[Gi, Hj] =0
which is generated by the operators [19]
G1= 2(Les+ L79) Hy = 3(Leg— L1o)
G2=5(L7s—Leo)  Ha=5(L7s+ Leo) (47)

G3 = 3(Le7+ Lgo) Hz = 3(Le7 — Lgo).
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We rewrite the second term in terms of the operat@rsand H;
(Yol Leo€ P17 110) = (Wol (Hz — Go)e P H2+ 52 )
= (Yol Hae P& P02 o) — (10| Go&™'P 927 PH2 yjrg). (48)

The action ofG3 and H3 and the raising and lowering operatats. = G; + iG, and
H. = Hi +1H, on the ground state wavefunction can be evaluated by using the oscillator
realization of equation (32) and equation (35)

~ ~ ng ~
Gslyo) = —Hslyo) = Elllfo)

G_|Yo) = Hy o) = 0.
Thus, the ground state wavefunction is characterizeg by —go = —no/2 andh = hg =
—np/2. Equation (49) shows that the matrix element of @XBG>,) is a representation
matrix element for the positive discrete series, whereas that of exp-i8 H,) corresponds
to a representation matrix element for the negative discrete seriesThe relevant matrix

elements are given by [16]
ng  no B\ "
- = =)={-=-= -, )= ho ) . 50
22 22 2° 72 2 2> (Cosz> (50)

Therefore, the two terms on the right-hand side of equation (48) cancel, and the matrix
element

(49)

(Yol Leo€ " PL7|40) = O (51)

vanishes identically.
Summarizing, the elastic form factor of equation (38) is obtained by combining the
contributions from equations (43), (45) and (51)

ﬂ —2]10—2 1
Fo(k) = (cosh§> =—Q—5 (52)
(1+ 25 k2)

16u2t2

where we have used equation (40) and= g for the ground state wavefunction. This
result is in agreement with [3, 20], in which the form factor was derived as an integral
in bispherical coordinates. The derivation of transition form factors connecting the ground
state to excited states proceeds in a similar way. The results are given in table 3.

The general result for the elastic form factor of tedimensional hyper-Coulomb
potential can be obtained by using the properties 6f(m + 1, 2) dynamical group. The
derivation proceeds along the same lines as used in this section£06. The elastic form

factor is given by
1

(m=1272

(1+ 1néu2r2k

and shows a power-law dependence /on For the six-dimensional case it reduces to
equation (52).

Fo(k) =

(53)

)(m+1)/2

8. Nucleon form factors

The hyper-Coulomb interaction whose properties have been described in the previous
sections, can be used to analyse, at least approximately, nucleon phenomenology. In order to
do so, one has first to assign the observed nucleon resonances to states of the hyper-Coulomb
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Table 3. Form factors for the hyper-Coulomb problem. The hyper-Coulomb wavefunctions are
given by equation (27)y) = /e NIz gy /u with |§) = |, ¥, L) andn = o + 3.
The initial state isy) = |0, 0,0f) anda = no/v/6ut = 3+/6ur.

W=y LT €Yy

- 1
0.0.65 T
—_ H a
(1, 1,15, S AEINE) @ Riza2y 2
5\4,7 K2
(1,0, Ozfl «ﬁ(g)"(g)sm%,{i‘éaz)g/z
+ V21,515,945 k2a?
(2.2.2§] RN
+ ~/21,5\5.9\5 k
(2,2,2] ZEE m%,{w
L V21,515,915 k%a?
(2,2,04 =7 QP mmamn
B /7 5.4, 9.5 ka[l+ 489242
(2.1,1,] 15 O Tmeam
+ V3 (54,95 KPPl GEKP)
(2,0,0%| S (H3F) T E2a iz

Table 4. Identification of the states of equation (27) and table 1 (the quantum numbeis are
v, LF) with the observed baryon resonances. The spimnd the total angular momentum and
parity, J*, is also indicated. The experimental masses are from [24].

oy LP S JP Baryon Status  Mexp(MeV)
000 i1 N(©38) P;;  *** 938
000" 33 A(1232 P33 ™+ 1232
100" i 4 N(1440) Py * 1440
100" 1 g+ A(1600 P3z  *** 1600
111 i 1 N(1535)S1;  *** 1535
111 1 3" N(1520) D1z *** 1520
111 3 1 N(1650)S1;  *** 1650
111 3 3 N(1700) D3 ** 1700
111 3 = N(1675) D15 *** 1675
111 1 1 A(1620 S31  ** 1620
111 i 3 A(1700 Dzg *** 1700
200" i1 N(1710)Py; =+ 1710
222 3 5 N(1720) Py *** 1720
222 i85 N(1680) Fi5  **** 1680
222F 31 A(1910 Py *** 1910
222° 3 g* A(1920 Pz ** 1920
222 3 g+ A(1905 Fzs  *** 1905
222 3 If A(1950 Fa7  *** 1950
211 i 1 A(1900 Sz ** 1900

potential. This is done in table 4. The spatial wavefunction has to be combined with the
spin-flavour and colour parts, in such a way that the total wavefunction is antisymmetric
(see e.g. [3, 21, 22]). The nucleon itself is identified with the ground $fate= |0, O, 0!)
which hasn = 3, the Roper resonance is associated vth = |1, 0,07) andn = Z, and
the negative parity resonances wjih) = |1, 1, 1,,) andn = %
The formulae derived in the previous section provide a way to calculate form factors and
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Figure 1. The helicity amplitudesé’l’/2 and Ag/z in the Breit frame for the excitation of the
N(1520)D13 resonance. The full curve is the complete result of the model of [2], while the
broken curve is the result without the linear confining term. The experimental data are taken
from [25].

helicity amplitudes between the ground state and the baryon resonances (see e.g. [2, 22, 23)).
As an example, we show in figures 1 and 2 the helicity amplitudes leading to the resonances
N(1520)D;3 and N(1535¥1;:. The hyper-Coulomb results are compared with experimental
data and with complete calculations from [2] which also take into account the linear
confining term. It is seen that the hyper-Coulomb results are comparable in quality to those
of the second model [2]. Since the strength of the parameter of the linear confining term is
not too strong, the hyper-Coulomb form factors provide a good lowest-order approximation.
We also comment on the fact that the hyper-Coulomb interaction produces form factors that
decrease as the inverse of a power of the momentum transfecontrast with the harmonic
oscillator form factors (the other exactly solvable case) that drop too fast as a Gaussian [23].
For example, the elastic form factai’, (k) behaves as

1/(1+ k%a®)"/? hyper-Coulomb

2,2 . : (54)
exp(—k“B°/6) harmonic oscillator [23]

G(k) = {
wherea? = 2272 (see table 3).

9. Conclusions

In this paper we have presented a completely algebraic treatment of the six-dimensional
hyper-Coulomb problem in the context of the dynamical grai@(7,2). We have
developed a systematic way to construct the wavefunctions using step operators in the
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Figure 2. The same as in figure 1, but for the excitation of the N(1535)yesonance.

SO(7) D SO(6) labelsw, y. This makes it possible to derive elastic form factors and
transition matrix elements connecting the ground state to excited states in closed analytic
form in an entirely algebraic way. In the derivation we have used an oscillator realization
of the algebra ofSO(7, 2). This procedure can be readily extended to the hyper-Coulomb
problem in any number of dimensions, as it has been shown for the elastic form factor. We
discussed briefly the application to baryon phenomenology, in which it was found that the
form factors drop as powers of the momentum transfer, as is observed experimentally.

In conclusion, the present algebraic method provides an alternative to solving hyper-
Coulomb problems with integro-differential methods.
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