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Abstract. A completely algebraic treatment of the six-dimensional hyper-Coulomb problem
is discussed in terms of an oscillator realization of the dynamical algebra ofSO(7, 2). Closed
expressions are derived for the energy spectrum and form factors.

1. Introduction

Recently there has been renewed interest in the study of the three-body problem, largely
arising from constituent quark models of baryons in terms of three valence quarks. In these
problems, the hypercentral approximation [1], which means using a hypercentral potential,
often provides a good approximation to the actual situation [2, 3]. Among the hypercentral
potentials, two play a special role: the six-dimensional harmonic oscillator and the six-
dimensional Coulomb potential, since both problems are exactly solvable. In this paper,
we present a completely algebraic solution of the hyper-Coulomb problem. The method is
based on the use ofSO(7, 2) as a dynamical group of the six-dimensional hyper-Coulomb
potential [4]. It is a generalization ofSO(4, 2) dynamical group of the ordinary hydrogen
atom [5].

In addition to obtaining a series of mathematical results associated with this rather
complicated algebra, we briefly point out that the hyper-Coulomb potential can be used as
a good approximation to actual physical situations. One occurs in atomic physics and it
was mentioned long ago in [6]. The authors showed that the two-body Coulomb potential
in the hypercentral approximation, that is the hyper-Coulomb potential, provides a good
description of the lower atomic states. Another application occurs in hadronic physics, in
the constituent quark model of baryons. Due to the extraordinary difficulty in calculating
physical quantities from QCD (in the nonperturbative regime) one has to rely on models, like
constituent quark models. The short-range behaviour is dominated by Coulomb potentials
as seen from the nonrelativistic reduction of the one-gluon exchange diagram [7] and the
long-range one by a linear potential as from results of lattice calculations. So one considers
the potential dominated by a Coulomb-like plus a linear confining term [2, 8, 9]. The
Coulomb-like term provides a good approximation to the low-lying states and the effects
of the linear confining terms plus other small contributions can be taken into account in
perturbation theory as shown in [3]. This application is discussed in section 8. Particular
emphasis is paid to form factors which are the quantities of direct experimental interest, but
which in general are very difficult to calculate.
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2. The hyper-Coulomb potential

We consider the hyper-Coulomb potential in six dimensions

H = p2

2µ
− τ
r

(1)

with p2 =∑6
j=1p

2
j and r2 =∑6

j=1 r
2
j . The energy eigenvalues and the degeneracy of the

eigenstates can be obtained by studying the dynamical groupSO(7, 2) [4]. The generators
of the Lie algebra ofSO(7, 2) can be realized in coordinate space by

Ljk = rjpk − rkpj

Lj7 = 1
2rjp

2− pj
6∑
k=1

rkpk + 3
2ipj − 1

2rj

Lj8 = 1
2rjp

2− pj
6∑
k=1

rkpk + 3
2ipj + 1

2rj

Lj9 = rpj

L78 =
6∑
k=1

rkpk − 5
2i

L79 = 1
2(rp

2− r)
L89 = 1

2(rp
2+ r)

(2)

with j, k = 1, . . . ,6. These generators are antisymmetricLij = −Lji , and satisfy the
commutation relations

[Lij , Lkl ] = −i(gikLjl + gjlLik − gilLjk − gjkLil) (3)

with

gij =
{
−δij for j = 1, . . . ,7

+δij for j = 8, 9.
(4)

The SO(7, 2) algebra combines theSO(2, 1) spectrum generating algebra of the hyper-
Coulomb problem and itsSO(7) degeneracy group into a single algebraic structure [4].
The corresponding subgroup chains are

SO(7, 2) ⊃


SO(6) ⊗ SO(2, 1)
γ , q

SO(7) ⊗ SO(2)
ω , q0

 ⊃ SO(6)⊗ SO(2). (5)

The eigenstates of the hyper-Coulomb problem belong to a single infinite-dimensional
representation ofSO(7, 2) [4], which can be decomposed into the irreducible representations
of its subgroups to provide a complete set of basis states. The generators and the quadratic
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Casimir operators of the groups appearing in the group lattice of equation (5) are given by

SO(7) : Ljk(j, k = 1, . . . ,7) 32
7 = 1

2

7∑
j,k=1

L2
jk

SO(6) : Ljk(j, k = 1, . . . ,6) 32
6 = 1

2

6∑
j,k=1

L2
jk

SO(2, 1) : T1 = L79, T2 = L78, T3 = L89 T 2 = T 2
3 − T 2

1 − T 2
2

SO(2) : T3 = L89 T 2
3 .

(6)

The Casimir operators satisfy the relations [4]

T 2 = 32
6+ 15

4

T 2
3 = 32

7+ 25
4 .

(7)

This indicates that there exists a complementary relationship [10] between the groups
SO(2, 1) and SO(6) within the single irreducible representation ofSO(7, 2). As a
consequence, the irreducible representations ofSO(6) are determined by those ofSO(2, 1).
The same holds forSO(7) andSO(2). The basis states|ψ̃〉 can be classified either by the
SO(2, 1) ⊃ SO(2) labelsq, q0 which span the discrete representationD+ of SO(2, 1), or
by theSO(7) ⊃ SO(6) labelsω, γ which span the symmetric irreducible representation of
SO(7). They are simultaneous eigenfunctions of the Casimir operators of the subgroups in
equation (5) and satisfy the eigenvalue equations

T 2|ψ̃〉 = q(q + 1)|ψ̃〉 (q real and< 0)

T3|ψ̃〉 = q0|ψ̃〉 (q0 = −q + s with s = 0, 1, . . .)

32
7|ψ̃〉 = ω(ω + 5)|ψ̃〉 (ω = 0, 1, . . .)

32
6|ψ̃〉 = γ (γ + 4)|ψ̃〉 (γ = 0, 1, . . . , ω).

(8)

Combining equations (7) and (8), we find

q(q + 1) = γ (γ + 4)+ 15
4

q2
0 = ω(ω + 5)+ 25

4

(9)

which, solving forq < 0 andq0 > −q, gives

q = −γ − 5
2 q0 = ω + 5

2. (10)

3. Basis states

For three identical particles, the hyper-Coulomb Hamiltonian of equation (1) is invariant
under the permutation groupS3, and hence its eigenstates also carry good permutation
symmetry t = S, M or A, corresponding to the symmetric, mixed symmetric, and
antisymmetric irreducible representation ofS3, respectively. In order to incorporate the
permutation symmetry we associate the coordinatesrj with the Jacobi vectors for the three-
body problem [11]

ρ = 1√
2
(x1− x2) ≡ (r1, r2, r3)

λ = 1√
6
(x1+ x2− 2x3) ≡ (r4, r5, r6).

(11)
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Herex1, x2 andx3 denote the coordinates of the three particles. A convenient set of basis
states is provided by the irreducible representations of the group chain∣∣∣∣ SO(7) ⊃ SO(6) ⊃ [SU(3) ⊃ SO(3) ⊃ SO(2)] ⊗ SO(2)

ω , γ , (n1, n2) , L , ML , ν

〉
. (12)

The reduction ofSO(6) can be obtained by using the complementarity relationship between
the groupsSU(3) andSO(2) within the symmetric irreducible representationSO(6) [12].
As a consequence, the labels ofSU(3) are determined by that ofSO(2). The branching
rules are given by

γ = 0, 1, . . . , ω

ν = −γ,−γ + 2, . . . , γ

(n1, n2) =
(
γ,
γ − ν

2

)
.

(13)

The reduction fromSU(3) to the rotation groupSO(3) is not fully reducible. In order to
label the states uniquely an extra label is needed. We follow the procedure of [13] and
introduce instead of(n1, n2) the labels(λ, µ) = (n1 − n2, n2) = ((γ + ν)/2, (γ − ν)/2).
The values ofL contained in(λ, µ) are given by [13]

κ = min{λ,µ}min{λ,µ} − 2, . . . ,1 or 0

L =
{

max{λ,µ},max{λ,µ} − 2, . . . ,1 or 0 for κ = 0

κ, κ + 1, . . . , κ +max{λ,µ} for κ > 0

ML = −L,−L+ 1, . . . , L.

(14)

The S3 invariant states are given by the linear combinations

−i√
2(1+ δν,0)

(|ν〉 − | − ν〉)

(−1)ν0√
2(1+ δν,0)

(|ν〉 + | − ν〉).
(15)

Here we have introduced the labelν0 by ν = ν0 (mod 3). These wavefunctions transform
for ν0 = 0 ast = A, S, and forν0 = 1, 2 as the two components of the mixed symmetric
representationt = M. Summarizing, the basis states of the hyper-Coulomb problem can be
characterized uniquely by

|ψ̃〉 = |ω, γ, |ν|, κ, LPt ,ML〉. (16)

HereP = (−)γ denotes the parity. In table 1 we present the classification scheme of the
basis states forω = 4.

4. Energy spectrum

The energy spectrum of the hyper-Coulomb problem in six dimensions can be obtained by
using the properties of theSO(2, 1) spectrum generating algebra [4, 14]. The Schrödinger
equation can be expressed in terms of the generators ofSO(2, 1) by introducing

O|ψ〉 ≡ r(H − E)|ψ〉 = 0 (17)

with

O =
(

1

2µ
− E

)
T3+

(
1

2µ
+ E

)
T1− τ. (18)
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Table 1. Basis states ofSO(7) with ω = 4. The correspondingSO(2, 1) labels areq0 = ω+ 5
2

andq = −γ − 5
2 .

ω γ ν κ LPt

4 0 0 0 0+S
1 ± 1 0 1−M
2 ± 2 0 0+M, 2+M

0 1 1+A, 2+S
3 ± 3 0 1−S , 1−A, 3−S , 3−A
± 1 1 1−M, 2−M, 3−M

4 ± 4 0 0+M, 2+M, 4+M
± 2 1 1+M, 2+M, 3+M, 4+M
0 0 0+S , 2+A

2 2+S , 3+A, 4+S

This equation can be simplified further by performing a rotation about a tilting angleθ

Õ|ψ̃〉 = 0 (19)

with

|ψ̃〉 = Ne−iθT2|ψ〉

Õ = e−iθT2OeiθT2 =
(

1

2µ
− E

)
(T3 coshθ + T1 sinhθ)

+
(

1

2µ
+ E

)
(T1 coshθ + T3 sinhθ)− τ.

(20)

The tilting angle may be chosen to diagonalize either the compact generatorT3 for the bound
states, or the noncompact generatorT1 for the continuous states. The discrete spectrum is
obtained by the choice

tanhθ =
E + 1

2µ

E − 1
2µ

(21)

which reduces equations (19) and (20) to an eigenvalue equation ofT3

(
√
−2E/µT3− τ)|ψ̃〉 = 0. (22)

The energy eigenvalues of the hyper-Coulomb problem are obtained by solving equation (22)

E = −µτ
2

2n2
(n = q0 = ω + 5

2). (23)

The corresponding tilting angle is given by

θ = − ln(n/µτ). (24)

The physical eigenstates, i.e. the solutions of the Schrödinger equation for the hyper-
Coulomb problem, are related to the group states by a tilting rotation

|ψ〉 = 1

N e−i ln(n/µτ)T2|ψ̃〉. (25)
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They satisfy the normalization condition (note that the group metric is 1/r [15])

1= 〈ψ |ψ〉 = 1

N 2
〈ψ̃ |ei ln(n/µτ)T2re−i ln(n/µτ)T2|ψ̃〉

= 1

N 2
〈ψ̃ |ei ln(n/µτ)T2(T3− T1)e

−i ln(n/µτ)T2|ψ̃〉

= 1

N 2µτ
〈ψ̃ |n(T3− T1)|ψ̃〉

= n2

N 2µτ
. (26)

Hence, the normalized physical eigenstates can be expressed in terms of the group states as

|ψ〉 =
√
µτ

n
e−i ln(n/µτ)T2|ψ̃〉. (27)

5. Wavefunctions

The wavefunction|ψ̃〉 satisfies the eigenvalue equations of equation (8), and hence is a
SO(2, 1) eigenstate|ψ̃〉 = |q, q0〉 with

|q, q0〉 =
√

(−2q − 1)!

(q0+ q)!(q0− q − 1)!
(T+)q0+q |q,−q〉

〈q, q0| =
√

(−2q − 1)!

(q0+ q)!(q0− q − 1)!
〈q,−q|(T−)q0+q

(28)

with T± = T1 ± iT2. The action ofT3 and the raising and lowering operatorsT± on the
SO(2, 1) eigenstates|q, q0〉 is given by [16]

T3|q, q0〉 = q0|q, q0〉
T±|q, q0〉 =

√
−(q ∓ q0)(q ± q0+ 1)|q, q0± 1〉. (29)

The ground state of the hyper-Coulomb potential hasω = 0, and hence the principal quantum
number isn = q0 = ω + 5

2 = 5
2. Moreover, since the only allowed value ofγ is γ = 0,

we haveq = −γ − 5
2 = − 5

2. Excited states with the same value ofq, but with different
values ofq0, can be created by applying the step operatorsT± according to equation (28).
SinceT± commute with the generators ofSO(6) (and its subgroups), these operators do not
change the quantum numbers associated with the irreducible representations ofSO(6) and
its subgroupsγ , |ν|, κ, LPt andML. The operatorsT± are step operators inq0, and hence
change the value of theSO(7) labelω by one unit. Excited states with the same value ofq0,
but with different values ofq, can be created by using the operatorsLj7 with j = 1, . . . ,6.
SinceLj7 is a generator ofSO(7), it does not change the value ofω. However, under
SO(6) it transforms as a six-dimensional vector, and hence changes the value ofγ by one
unit. The transformation properties ofT± andLj7 underSO(2, 1) give rise to the selection
rules

T± : 1q = 1γ = 0 1q0 = 1ω = ±1
Lj7 : 1q = 1γ = ±1 1q0 = 1ω = 0.

(30)
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Summarizing, theSO(2, 1) states|ψ̃〉 = |q, q0〉 can be created from the ground state by
applying the operatorsT+ andLj7

| − 5
2,

5
2〉

T+−→ | − 5
2,

7
2〉

T+−→ | − 5
2,

9
2〉

T+−→ . . .

l Lj7 l Lj7

| − 7
2,

7
2〉

T+−→ | − 7
2,

9
2〉

T+−→ . . .

l Lj7

| − 9
2,

9
2〉

T+−→ . . . .

(31)

Similarly, the ket states〈ψ̃ | = 〈q, q0| can be created by using the operatorsT− andLj7. It
is important to note, that theSO(7) wavefunctions|ψ̃〉 = |q, q0〉 of equation (28) satisfy
a different normalization condition, see equation (26), than theSO(7) wavefunctions of
[17, 18]. The hyper-Coulomb wavefunctions, i.e. the eigenfunctions|ψ〉 of the original
Hamiltonian of equation (1), correspond to the group states|ψ̃〉 tilted aboutT2 by an angle
θ = − ln(n/µτ), see equation (27). SinceT2 commutes with the generators ofSO(6) (and
its subgroups), the hyper-Coulomb wavefunction|ψ〉 still has goodγ , |ν|, κ, LPt andML,
but theSO(7) labelω is no longer a good quantum number.

6. Oscillator realization

The oscillator realization, frequently used for hydrogen-like problems characterized by the
dynamical groupSO(4, 2), is based on the isomorphism betweenSO(4) andSU(2)⊗SU(2),
and the Schwinger realization ofSU(2) [5]. However, this realization cannot be generalized
to other dimensions, since it is based on a particular property of the three-dimensional case.
In [19] an oscillator realization was proposed for the generalm-dimensional case which is
characterized by the dynamical groupSO(m+1, 2). For six dimensions (m = 6) this gives
a realization of the algebra ofSO(7, 2) in terms of seven boson creation and annihilation
operators

Ljk = −i(a†j ak − a†kaj )

Lj8 = 1
2i

( 7∑
k=1

a
†
ka
†
kaj − 2

7∑
k=1

a
†
j a
†
kak − 5a†j + aj

)

Lj9 = − 1
2

( 7∑
k=1

a
†
ka
†
kaj − 2

7∑
k=1

a
†
j a
†
kak − 5a†j − aj

)

L89 =
7∑
k=1

a
†
kak + 5

2 (j, k = 1, . . . ,7).

(32)

The basis states of equation (16) correspond to linear combinations of the oscillator states
7∏
i=1

1√
ni !
(a
†
i )
ni |0〉 (33)

where the total number of oscillator quanta is
∑

i ni = ω. According to equation (11),
we associatea†j with j = 1, . . . ,6 with the components of the two Jacobi vector boson

operators anda†7 with a scalar boson operator

a
†
k ≡ p†ρ,k a

†
k+3 ≡ p†λ,k a

†
7 ≡ s† (34)

with k = 1, 2, 3. The oscillator realization of equation (32) is especially useful in deriving
matrix elements.
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Table 2. Oscillator realization for the wavefunctions|ψ̃〉 = |q, q0〉 and 〈ψ̃ | = 〈q, q0| with
ω 6 2. For these states the labelsν andκ are redundant.

q q0 ω γ LPt ML Oscillator

− 5
2

5
2 0 0 0+S 0 |0〉

− 5
2

5
2 0 0 0+S 0 〈0|

− 5
2

7
2 1 0 0+S 0 1√

5
〈0|s

− 7
2

7
2 1 1 1−Mρ 1 i√

5
〈0|pρ,1

− 7
2

7
2 1 1 1−Mλ 1 i√

5
〈0|pλ,1

− 5
2

9
2 2 0 0+S 0 1

2
√

15
〈0|s2

− 7
2

9
2 2 1 1−Mρ 1 i√

35
〈0|spρ,1

− 7
2

9
2 2 1 1−Mλ 1 i√

35
〈0|spλ,1

− 9
2

9
2 2 2 2+S 2 1

2
√

35
〈0|[pρ,1pρ,1 + pλ,1pλ,1]

− 9
2

9
2 2 2 1+A 1 − 1√

70
〈0|[pρ,1pλ,0 − pλ,1pρ,0]

− 9
2

9
2 2 2 2+Mρ 2 1√

35
〈0|pρ,1pλ,1

− 9
2

9
2 2 2 2+Mλ 2 1

2
√

35
〈0|[pρ,1pρ,1 − pλ,1pλ,1]

− 9
2

9
2 2 2 0+Mρ 0 1√

105
〈0|pρ · pλ

− 9
2

9
2 2 2 0+Mλ 0 1

2
√

105
〈0|[pρ · pρ − pλ · pλ]

7. Form factors

The six-dimensional hyper-Coulomb potential is an exactly solvable model, and hence
provides a set of closed expressions for the spectrum and the form factors. The hyper-
Coulomb ground state|ψ0〉 = √µτe−i ln(n0/µτ)T2|ψ̃0〉/n0 is characterized by the principal
quantum numbern0 = 5

2. According to the oscillator realization of equation (32), the
ground state has zero oscillator quanta

|ψ̃0〉 ≡ |0〉 〈ψ̃0| ≡ 〈0|. (35)

Excited states can be created by the procedure outlined in section 5 in equations (28) and
(31). The oscillator realization of someSO(2, 1) eigenstates|q, q0〉 and〈q, q0| is given in
table 2.

The derivation of the elastic form factor requires the evaluation of the matrix element
of exp(ikλz) = exp(ikr6) in the ground state|ψ0〉

F0(k) = 〈ψ0|eikr6|ψ0〉 = µτ

n2
0

〈ψ̃0|ei ln(n0/µτ)T2reikr6e−i ln(n0/µτ)T2|ψ̃0〉. (36)

According to equation (2), both the coordinaterj and the radiusr can be expressed in terms
of a linear combination of generators

rj = Lj8− Lj7 r = L89− L79. (37)

This allows one to expressF0(k) in terms of the generators ofSO(7, 2)

F0(k) = µτ

n2
0

〈ψ̃0|ei ln(n0/µτ)L78(L89− L79)e
ik(L68−L67)e−i ln(n0/µτ)L78|ψ̃0〉

= 1

n2
0

〈ψ̃0|n0(L89− L79)e
ikn0(L68−L67)/µτ |ψ̃0〉

= 〈ψ̃0|eikn0(L68−L67)/µτ |ψ̃0〉 − 1

n0
〈ψ̃0|L79eikn0(L68−L67)/µτ |ψ̃0〉. (38)



Algebraic treatment of the hyper-Coulomb problem 9049

(i) The first term in equation (38) can be evaluated by rewriting

eikn0(L68−L67)/µτ = e−iαL67e−iβL78e−iγL67 (39)

with

sinh(β/2) = ±kn0/2µτ

cosh(β/2) = (1+ (kn0/2µτ)
2
)1/2

sinα = − sinγ = ± 1

cosh(β/2)

cosα = − cosγ = − tanh(β/2).

(40)

Since the ground state has zero oscillator quanta, the matrix element of equation (39) reduces
to

〈ψ̃0|eikn0(L68−L67)/µτ |ψ̃0〉 = 〈ψ̃0|e−iαL67e−iβL78e−iγL67|ψ̃0〉
= 〈ψ̃0|e−iβL78|ψ̃0〉. (41)

The ground state wavefunction satisfies

T3|ψ̃0〉 = n0|ψ̃0〉
T−|ψ̃0〉 = a7|ψ̃0〉 = 0

(42)

and can be characterized by|q = −n0, q0 = n0〉. The ground state expectation value of
exp(−iβL78) in equation (41) is a representation matrix element for the discrete seriesD+

of SO(2, 1) [16]

〈ψ̃0|e−iβL78|ψ̃0〉 = 〈−n0, n0|e−iβT2| − n0, n0〉 =
(

cosh
β

2

)−2n0

. (43)

(ii) The second contribution to the form factor of equation (38) can be rewritten as

〈ψ̃0|L79eikn0(L68−L67)/µτ |ψ̃0〉 = 〈ψ̃0|L79e−iαL67e−iβL78e−iγL67|ψ̃0〉
= 〈ψ̃0|(L79 cosα + L69 sinα)e−iβL78|ψ̃0〉. (44)

The first term on the right-hand side can be expressed in terms of the derivative of
equation (43)

〈ψ̃0|L79e−iβL78|ψ̃0〉 = −i〈ψ̃0|L78e−iβL78|ψ̃0〉
= d

dβ
〈ψ̃0|e−iβL78|ψ̃0〉

= −n0

(
sinh

β

2

)(
cosh

β

2

)−2n0−1

. (45)

The second term in equation (44), proportional to sinα, vanishes identically. This can be
seen by introducing theSO(2, 1)⊗ SO(2, 1) algebra

[G1,G2] = −iG3 [G2,G3] = iG1 [G3,G1] = iG2

[H1, H2] = −iH3 [H2, H3] = iH1 [H3, H1] = iH2

[Gi,Hj ] = 0

(46)

which is generated by the operators [19]

G1 = 1
2(L68+ L79) H1 = 1

2(L68− L79)

G2 = 1
2(L78− L69) H2 = 1

2(L78+ L69)

G3 = 1
2(L67+ L89) H3 = 1

2(L67− L89).

(47)
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We rewrite the second term in terms of the operatorsGi andHj

〈ψ̃0|L69e−iβL78|ψ̃0〉 = 〈ψ̃0|(H2−G2)e
−iβ(H2+G2)|ψ̃0〉

= 〈ψ̃0|H2e−iβH2e−iβG2|ψ̃0〉 − 〈ψ̃0|G2e−iβG2e−iβH2|ψ̃0〉. (48)

The action ofG3 andH3 and the raising and lowering operatorsG± = G1 ± iG2 and
H± = H1 ± iH2 on the ground state wavefunction can be evaluated by using the oscillator
realization of equation (32) and equation (35)

G3|ψ̃0〉 = −H3|ψ̃0〉 = n0

2
|ψ̃0〉

G−|ψ̃0〉 = H+|ψ̃0〉 = 0.
(49)

Thus, the ground state wavefunction is characterized byg = −g0 = −n0/2 andh = h0 =
−n0/2. Equation (49) shows that the matrix element of exp(−iβG2) is a representation
matrix element for the positive discrete seriesD+, whereas that of exp(−iβH2) corresponds
to a representation matrix element for the negative discrete seriesD−. The relevant matrix
elements are given by [16]〈
−n0

2
,
n0

2

∣∣∣ e−iβG2

∣∣∣−n0

2
,
n0

2

〉
=
〈
−n0

2
,−n0

2

∣∣∣ e−iβH2

∣∣∣−n0

2
,−n0

2

〉
=
(

cosh
β

2

)−n0

. (50)

Therefore, the two terms on the right-hand side of equation (48) cancel, and the matrix
element

〈ψ̃0|L69e−iβL78|ψ̃0〉 = 0 (51)

vanishes identically.
Summarizing, the elastic form factor of equation (38) is obtained by combining the

contributions from equations (43), (45) and (51)

F0(k) =
(

cosh
β

2

)−2n0−2

= 1(
1+ 25

16µ2τ 2 k
2
)7/2 (52)

where we have used equation (40) andn0 = 5
2 for the ground state wavefunction. This

result is in agreement with [3, 20], in which the form factor was derived as an integral
in bispherical coordinates. The derivation of transition form factors connecting the ground
state to excited states proceeds in a similar way. The results are given in table 3.

The general result for the elastic form factor of them-dimensional hyper-Coulomb
potential can be obtained by using the properties ofSO(m + 1, 2) dynamical group. The
derivation proceeds along the same lines as used in this section form = 6. The elastic form
factor is given by

F0(k) = 1(
1+ (m−1)2

16µ2τ 2 k
2
)(m+1)/2

(53)

and shows a power-law dependence onk. For the six-dimensional case it reduces to
equation (52).

8. Nucleon form factors

The hyper-Coulomb interaction whose properties have been described in the previous
sections, can be used to analyse, at least approximately, nucleon phenomenology. In order to
do so, one has first to assign the observed nucleon resonances to states of the hyper-Coulomb



Algebraic treatment of the hyper-Coulomb problem 9051

Table 3. Form factors for the hyper-Coulomb problem. The hyper-Coulomb wavefunctions are
given by equation (27)|ψ〉 = √µτe−i ln(n/µτ)T2 |ψ̃〉/n with |ψ̃〉 = |ω, γ, LPt 〉 andn = ω + 5

2 .

The initial state is|ψ̃〉 = |0, 0, 0+S 〉 anda = n0/
√

6µτ = 5
2

√
6µτ .

〈ψ̃ ′| = 〈ω, γ, LPt | 〈ψ ′|ei
√

2/3kr6 |ψ〉
〈0, 0, 0+S | 1

(1+k2a2)7/2

〈1, 1, 1−M | −i
√

7( 5
6)

4( 7
6)

4 ka

(1+ 49
36k

2a2)9/2

〈1, 0, 0+S |
√

7( 5
6)

4( 7
6)

5 k2a2

(1+ 49
36k

2a2)9/2

〈2, 2, 2+S | −
√

21√
2
( 5

7)
5( 9

7)
5 k2a2

(1+ 81
49k

2a2)11/2

〈2, 2, 2+M |
√

21√
2
( 5

7)
5( 9

7)
5 k2a2

(1+ 81
49k

2a2)11/2

〈2, 2, 0+M | −
√

21
2 ( 5

7)
5( 9

7)
5 k2a2

(1+ 81
49k

2a2)11/2

〈2, 1, 1−M | −i
√

7
3 (

5
7)

4( 9
7)

5 ka[1+ 486
49 k

2a2]

(1+ 81
49k

2a2)11/2

〈2, 0, 0+S |
√

3
2 (

5
7)

4( 9
7)

5 k
2a2[1+ 486

49 k
2a2]

(1+ 81
49k

2a2)11/2

Table 4. Identification of the states of equation (27) and table 1 (the quantum numbers areω,
γ , LPt ) with the observed baryon resonances. The spin,S, and the total angular momentum and
parity, JP , is also indicated. The experimental masses are from [24].

ω γ LP S JP Baryon Status Mexp(MeV)

0 0 0+ 1
2

1
2
+

N(938)P11 **** 938

0 0 0+ 3
2

3
2
+

1(1232) P33 **** 1232

1 0 0+ 1
2

1
2
+

N(1440)P11 **** 1440

1 0 0+ 1
2

3
2
+

1(1600) P33 *** 1600

1 1 1− 1
2

1
2
−

N(1535)S11 **** 1535

1 1 1− 1
2

3
2
−

N(1520)D13 **** 1520

1 1 1− 3
2

1
2
−

N(1650)S11 **** 1650

1 1 1− 3
2

3
2
−

N(1700)D13 *** 1700

1 1 1− 3
2

5
2
−

N(1675)D15 **** 1675

1 1 1− 1
2

1
2
−

1(1620) S31 **** 1620

1 1 1− 1
2

3
2
−

1(1700) D33 **** 1700

2 0 0+ 1
2

1
2
+

N(1710)P11 *** 1710

2 2 2+ 1
2

3
2
+

N(1720)P13 **** 1720

2 2 2+ 1
2

5
2
+

N(1680)F15 **** 1680

2 2 2+ 3
2

1
2
+

1(1910) P31 **** 1910

2 2 2+ 3
2

3
2
+

1(1920) P33 *** 1920

2 2 2+ 3
2

5
2
+

1(1905) F35 **** 1905

2 2 2+ 3
2

7
2
+

1(1950) F37 **** 1950

2 1 1− 1
2

1
2
−

1(1900) S31 *** 1900

potential. This is done in table 4. The spatial wavefunction has to be combined with the
spin-flavour and colour parts, in such a way that the total wavefunction is antisymmetric
(see e.g. [3, 21, 22]). The nucleon itself is identified with the ground state|ψ̃〉 = |0, 0, 0+S 〉
which hasn = 5

2, the Roper resonance is associated with|ψ̃〉 = |1, 0, 0+S 〉 andn = 7
2, and

the negative parity resonances with|ψ̃〉 = |1, 1, 1−M〉 andn = 7
2.

The formulae derived in the previous section provide a way to calculate form factors and
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Figure 1. The helicity amplitudesAp1/2 andAp3/2 in the Breit frame for the excitation of the
N(1520)D13 resonance. The full curve is the complete result of the model of [2], while the
broken curve is the result without the linear confining term. The experimental data are taken
from [25].

helicity amplitudes between the ground state and the baryon resonances (see e.g. [2, 22, 23]).
As an example, we show in figures 1 and 2 the helicity amplitudes leading to the resonances
N(1520)D13 and N(1535)S11. The hyper-Coulomb results are compared with experimental
data and with complete calculations from [2] which also take into account the linear
confining term. It is seen that the hyper-Coulomb results are comparable in quality to those
of the second model [2]. Since the strength of the parameter of the linear confining term is
not too strong, the hyper-Coulomb form factors provide a good lowest-order approximation.
We also comment on the fact that the hyper-Coulomb interaction produces form factors that
decrease as the inverse of a power of the momentum transferk, in contrast with the harmonic
oscillator form factors (the other exactly solvable case) that drop too fast as a Gaussian [23].
For example, the elastic form factorGp

E(k) behaves as

G
p

E(k) =
{

1/(1+ k2a2)7/2 hyper-Coulomb

exp(−k2β2/6) harmonic oscillator [23]
(54)

wherea2 = 25
24µ

2τ 2 (see table 3).

9. Conclusions

In this paper we have presented a completely algebraic treatment of the six-dimensional
hyper-Coulomb problem in the context of the dynamical groupSO(7, 2). We have
developed a systematic way to construct the wavefunctions using step operators in the
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Figure 2. The same as in figure 1, but for the excitation of the N(1535)S11 resonance.

SO(7) ⊃ SO(6) labelsω, γ . This makes it possible to derive elastic form factors and
transition matrix elements connecting the ground state to excited states in closed analytic
form in an entirely algebraic way. In the derivation we have used an oscillator realization
of the algebra ofSO(7, 2). This procedure can be readily extended to the hyper-Coulomb
problem in any number of dimensions, as it has been shown for the elastic form factor. We
discussed briefly the application to baryon phenomenology, in which it was found that the
form factors drop as powers of the momentum transfer, as is observed experimentally.

In conclusion, the present algebraic method provides an alternative to solving hyper-
Coulomb problems with integro-differential methods.
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